

IDEAL W.G. TO COAX TRANSITIONS USING A F.B.M. MONPOLE

F.C. de Ronde

University of Bath, School of El. Eng., Bath, Avon, BA2 7AY, UK

ABSTRACT

A w.g. - coax probe transition is in fact a monopole in a waveguide. We can match this, without tuning screws, over the full w.g. band for all types of w.g.: radial, circular TM_{01} , rectangular, single or double ridge and trough guide. Ideal rect. w.g. to coax transitions, right angle-, as well as end launch ones, have been realised: V.S.W.R. $\ll 1.02$ for X-band with beadless coax connectors.

INTRODUCTION

Of the many configurations of w.g.-coax transitions, the probe type (Fig. 1a) is most popular due to its simple construction and rather good performance (V.S.W.R. $\ll 1.25$) without special precautions. Attempts to realise ideal transitions (V.S.W.R. $\ll 1.02$) failed, unless tuning screws were used. These perturb the reproducibility and even raise the costs. At any frequency in the band a perfect match can be obtained with the right combination of probe height (h) and - distance (d) from the plunger [1]. For which configuration can both be kept constant and still automatically full-band matched (f.b.m.)? For the symmetrical case (Fig. 1b), only h has to be kept constant; the straight rect. w.g. has been excited by a monopole. Having f.b.m. a monopole in free space first, we also learned how to match transitions from coax - via the monopole - to radial, to circular (TM_{01}) mode, to rectangular w.g., the trough guide and the single- and double-ridge w.g. They are all frequency dependent impedance steps which can now be f.b.m. [2].

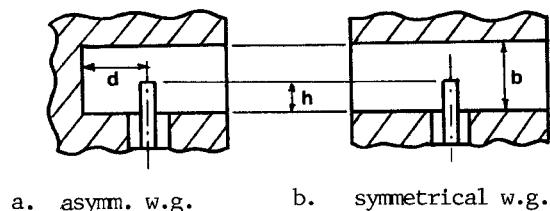


Fig. 1 PROBE TYPE W.G.- COAX TRANSITIONS

I. A FULL-BAND MATCHED QUARTERWAVE MONPOLE

A coaxial line protrudes with its inner conductor to a height h ($\cong \lambda/4$) above a metal ground plane, this way forming a monopole (Fig. 2a). Its equivalent circuit (Fig. 2b) is a series resonator with total impedance:

$$Z_M = R_M + j(\omega L_M - 1/\omega C_M) \\ = R_M(\omega) + jX_M(\omega)$$

(Fig. 2c)

at resonance:

$$X_M = 0, \text{ so } Z_M = R_0 \cong 36 \Omega \text{ for } h \cong 0.23 \lambda_0$$

From experiments [3], we deduced rather simple expressions:

$$R_M(\omega) = R_0 \tan^2 \beta h/2$$

$$\text{and } X_M(\omega) = X_0 - X_{\max} \sin 2 \beta h$$

Being a rather frequency dependent impedance step with a small reactive part, towards the coax, it could be f.b.m. by a "reduced-quarterwave" transformer [2].

a. dimensions

b. equivalent circuit

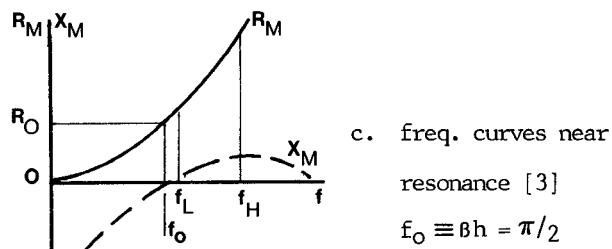


Fig. 2 A QUARTERWAVE MONPOLE

The reduced-quarterwave transformer

It is well known that a transmission line of length l_1 and char. impedance Z_1 transforms an impedance Z_o into an impedance $Z_i = R_i + jX_i$ where (see Fig. 3a)

$$\frac{R_i}{Z_o} = \frac{1 + \tan^2 \beta_1 l_1}{1 + (Z_o/Z_1)^2 \tan^2 \beta_1 l_1} \quad \text{and}$$

$$\frac{X_i}{Z_o} = \frac{(Z_1 - Z_o)}{Z_1} \frac{\tan \beta_1 l_1}{1 + (Z_o/Z_1)^2 \tan^2 \beta_1 l_1}$$

For actual values $Z_o = 50 \Omega$, $Z_1 = 72 \Omega$ and $\beta_1 l_1 = \phi$ these expressions simplify to:

$$\frac{R_i}{Z_o} = 1 + \frac{2 \tan^2 \phi/2}{1 + \tan^4 \phi/2} \quad \text{and} \quad \frac{X_i}{Z_o} = 0.72 \frac{\sin 2\phi}{1 + \cos^2 \phi}$$

From Fig. 3b we see that their frequency curves are similar to those of the monopole (Fig. 2c), so a full-band match seems possible. If, finally, it proves difficult to obtain a perfect match over the whole frequency band, a radial "reduced-quarterwave" transformer might be added to the coaxial one (fig. 4). With these four independent parameters, an ideal match proved possible: the frequency curves to be matched are rather monotonous functions.

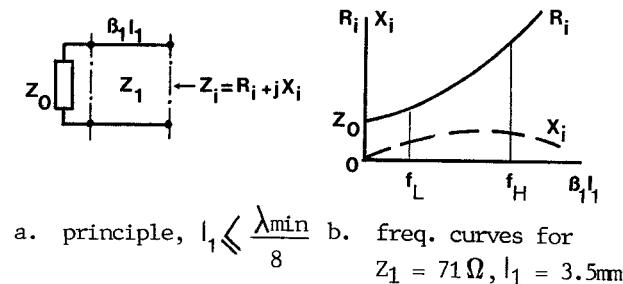


Fig. 3 THE REDUCED-QUARTERWAVE TRANSFORMER

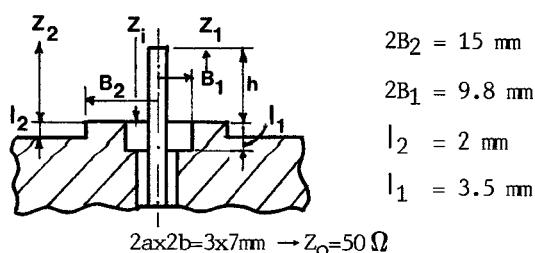


Fig. 4 COAXIAL - & RADIAL RED. $\lambda/4$ TRANSFORMER (B_1, l_1 resp. l_2, B_2) IN F.B.M. MONPOLE

II THE F.B.M. MONPOLE IN DIFFERENT SYMMETRICAL WAVEGUIDES

Once the monopole is matched we can apply it in many w.g. types. Looking into each waveguide, the coaxial line sees a different frequency dependent impedance. Its real part is mainly determined by the transmitted power - its far field - so by h and its coaxial transformer; its imaginary part is representative for the higher-order modes - its near field - and can best be matched locally, so with the radial transformer or other local matching elements. We will start with the simplest ones: the rotation symmetrical waveguides.

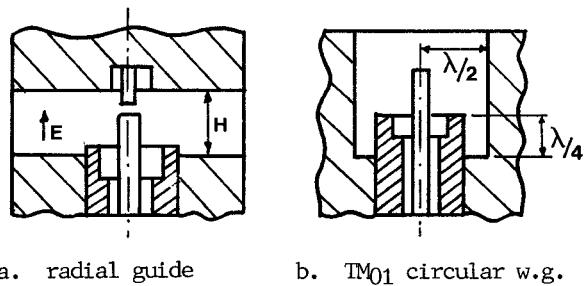
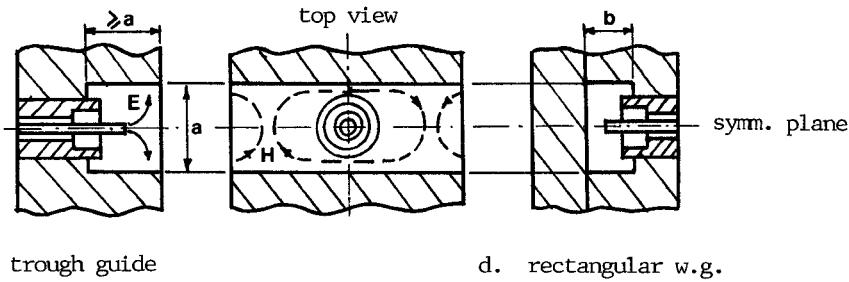


Fig. 5 A F.B.M. MONPOLE IN ROTATION SYMM. W.G.


The radial waveguide.

Screening-off the monopole above a parallel metal plane at height ($H \leq \lambda/2$), a radial w.g. has been obtained (Fig. 5a). The load for the monopole has changed, but matching can be achieved again by changing h , l_1 and Z_1 . If the antenna top comes too close to the top plate, a blind hole must be applied, eventually to be used for matching as well. After optimising l_1 , Z_1 and l_2 , Z_2 an ideal w.g. transition (V.S.W.R. ≤ 1.02 for X-Band) could be realised; very useful as a precision coax mm load and for power combining [4].

The TM_{01} circular waveguide.

The simplest way to excite a pure TM_{01} mode in circular w.g. is by a coaxial line (Fig. 5b). In order to prevent high reflection from the w.g. walls, located about $\lambda/2$ from the monopole, a high series impedance has been inserted; the monopole was placed a quarterwave away from the shorted w.g. end. Only minor corrections were needed for h and the "reduced" transformers for full-band matching (V.S.W.R. ≤ 1.05).

We continue with the straight symm. waveguides:

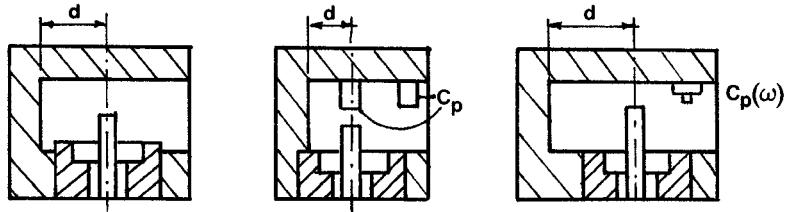
c. trough guide

d. rectangular w.g.

III IDEAL RECT. W.G.-COAX TRANSITIONS

Fig. 5 A F.B.M. MONPOLE IN STRAIGHT SYMM. W.G.

The trough guide.


This guide can be obtained by symmetrically providing a monopole with metal sidewalls (Fig. 5c). For a distance "a" apart, the magnetic field lines are squeezed as in a rectangular w.g. Matching can be achieved with the coaxial - and radial transformer.

The rectangular waveguide

Closing the trough with a top plate at a height b , we obtain a coax-to-symmetrical rectangular w.g. (cross-section $a \times b$) transition (Fig. 5d). In a similar way as above the coaxial- and radial-transformer provide the matching, correcting its dimensions for the change in configuration.

The right angle type

Usual w.g. to coax transitions are asymmetrical (Fig. 6), one w.g. arm is short-circuited by a plunger, a distance d away from the monopole. Above we have seen how to obtain h constant. Now we must try to achieve also d constant for full-band matching. First h , l_1 and Z_1 must be such that matching at any frequency in the band can be obtained by varying only d . Now for f.b.m., d must be kept constant, which can be done for $d = \lambda g/4$ for the lowest frequency (f_L) in the band, the medium one (f_M) or the highest one (f_H). The simplest and least critical one is at f_M . The short-circuited w.g. of length d represents a parallel resonator in the plane of the antenna, being resonant for f_M . Then reflections at f_L and f_H are already rather low, but with the right dimensions of h , l_1 , Z_1 , l_2 and Z_2 (Fig. 4) a perfect f.b.m. (V.S.W.R. ≤ 1.02) could be obtained (Fig. 6a). The shortest, but most critical choice for d is $\lambda g/4$ at f_H , so a shunt inductance to the monopole over the band. Its reflection can be compensated by a shunt capacitance with the same frequency curve, so a double cap. stub C_p (Fig. 6b). As one stub is close to the antenna top, h has to be corrected, which is not attractive. A more independent method is by choosing $d = \lambda g/4$ at f_L , so a shunt capacitance to the monopole over the band, which reflection can be compensated by a special capacitive stub a quarterwave in front of it (Fig. 6c).

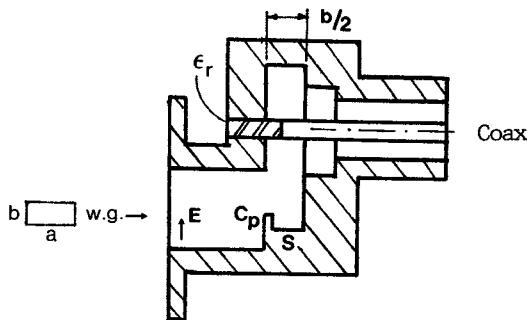

$d = \lambda g/4$ for : a. $f_M (\approx 10 \text{ GHz})$ b. $f_H (\approx 12.4 \text{ GHz})$ c. $f_L (\approx 8.2 \text{ GHz})$

Fig. 6 F.B.M. COAX-RECT. W.G. TRANSITIONS WITH DIFFERENT d 's

The end-launch type.

A f.b.m. monopole is used here as well, so a 90° corner is needed, either in coax, in waveguide or in the antenna. A waveguide corner was preferred, not only in view of mm waves, but at the same time for easy matching of the transition (Fig. 7).

The "reduced-quarterwave" transformer has been realised by the lower waveguide (b/2). The reflection of the corner and the impedance step could be so reduced - by way of a small step S plus a shunt capacitance C_p in the form of a metal strip - that it forms the right matching element for the transition. This way an extremely short, ideal (V.S.W.R. ≤ 1.02) transition has been realised.

M.E.: S = step; C_p = parallel cap.

ϵ_r = dielectric support for
inner conductor of coax

CONCLUSION

In a systematic way ideal transitions from coax to different types of waveguides can now be realised without the need for tuning screws. They are all based on the full-band matching of a monopole in the particular w.g. Consequently, identical pairs can easily be realised, ideal for bridge measurements.

ACKNOWLEDGEMENT

The author would like to thank Prof. T.E. Rozzi for giving him the opportunity to do this research.

REFERENCES

1. R.E. Collin, "Field theory of guided waves", McGraw Hill, N.Y. 1960, Chapter 7.
2. F.C. De Ronde, "An octave-wide matched impedance step and - quarterwave transformer", Int. Microwave Symp. MIT - Baltimore 1986, Digest pp 151-154.
3. R.W.P. King, "The theory of linear antennas", II.38, Harvard Univ. Press, Cambridge, Mass. 1956.
4. R.C. Allison, R.L. Eisenhart, P.T. Greiling, "A matched coaxial-radial transmission line junction", Int. Microwave Symp. MIT 1978, Digest pp 44-46.

Fig. 7 END-LAUNCH COAX-RECT. W.G. TRANSITION